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Abstract We describe the baseline model configuration and simulation characteristics of the
Geophysical Fluid Dynamics Laboratory (GFDL)'s Atmosphere Model version 4.1 (AM4.1), which builds
on developments at GFDL over 2013–2018 for coupled carbon‐chemistry‐climate simulation as part of the
sixth phase of the Coupled Model Intercomparison Project. In contrast with GFDL's AM4.0 development
effort, which focused on physical and aerosol interactions and which is used as the atmospheric component
of CM4.0, AM4.1 focuses on comprehensiveness of Earth system interactions. Key features of this model
include doubled horizontal resolution of the atmosphere (~200 to ~100 km) with revised dynamics and
physics from GFDL's previous‐generation AM3 atmospheric chemistry‐climate model. AM4.1 features
improved representation of atmospheric chemical composition, including aerosol and aerosol precursor
emissions, key land‐atmosphere interactions, comprehensive land‐atmosphere‐ocean cycling of dust and
iron, and interactive ocean‐atmosphere cycling of reactive nitrogen. AM4.1 provides vast improvements in
fidelity over AM3, captures most of AM4.0's baseline simulations characteristics, and notably improves on
AM4.0 in the representation of aerosols over the Southern Ocean, India, and China—even with its
interactive chemistry representation—and in its manifestation of sudden stratospheric warmings in the
coldest months. Distributions of reactive nitrogen and sulfur species, carbon monoxide, and ozone are all
substantially improved over AM3. Fidelity concerns include degradation of upper atmosphere equatorial
winds and of aerosols in some regions.

Plain Language Summary GFDL has developed a coupled chemistry‐climate Atmospheric
Model (AM4.1) as part of its fourth‐generation coupled model development activities. AM4.1 includes
comprehensive atmospheric chemistry for representing ozone and aerosols and has been developed for use
in chemistry and air quality applications, including advanced land‐atmosphere‐ocean coupling. With
fidelity near to that of AM4.0, AM4.1 features vastly improved representation of climate mean patterns and
variability from previous GFDL atmospheric chemistry‐climate models.

1. Introduction

Atmospheric chemistry and composition are intrinsically coupled to the Earth's climate system. The pivotal
role of chemistry‐climate interactions in regulating climate has been recognized for over 30 years
(Ramanathan et al., 1987). Advances in fundamental knowledge of atmospheric chemistry and availability
of long‐term measurements, combined with advances in computing, have provided an opportunity to
enhance the comprehensiveness of our representation of atmospheric chemistry‐climate interactions. For
the fifth phase of the Coupled Model Intercomparison Project (CMIP5), Geophysical Fluid Dynamics
Laboratory (GFDL) contributed its first coupled chemistry‐climate model, CM3 (Donner et al., 2011), which
allowed us to represent interactive aerosols and ozone, rather than prescribing concentrations from offline
models (e.g., Horowitz et al., 2003). Much has been learned in the preceding years as to the strengths and
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weaknesses of CM3 chemistry, including the critical role of prognostic aerosol interactions (e.g., Levy et
al., 2013; Naik, Horowitz, et al., 2013). As such, interactive aerosols were included in all of GFDL's fourth‐
generation atmospheric model development efforts, targeted for the sixth phase of the Coupled Model
Intercomparison Project (CMIP6). The high computational cost of interactive atmospheric chemistry, how-
ever, was avoided in GFDL's recent CM4.0 development (Held et al., 2019) by prescribing ozone and other
oxidants. A full, interactive chemistry representation, alongwith a comprehensive carbon cycle, was reserved
in this generation of GFDL models for Earth System Model development in ESM4.1 (Dunne et al., 2020).
Thus, CM4 included a focus on ocean resolution, while ESM4.1 focused on a comprehensive representation
of the Earth system.

The overall goal of AM4.1 development was to merge a suite of mostly parallel sets of updates and innova-
tions into GFDL's fourth‐generation atmospheric model. These updates include a revised chemical mechan-
ism from AM3 to AM4.1 to take advantage of new laboratory kinetic data (e.g., Mao, Fan, et al., 2013; Sander
et al., 2011; as implemented by Li et al., 2016), in particular for photooxidation of biogenic volatile organic
compounds (BVOCs). Analysis of deficiencies in AM3 chemistry has pointed out improper treatment of
nitrate aerosols and gas‐aerosol interactions and biases in wet and dry deposition.We alsowanted to leverage
successful follow‐on development efforts from AM3 targeted to implement reduced nitrogen cycling (Paulot
et al., 2016; Paulot, Paynter, et al., 2017) and improved representation of the seasonal cycle in sulfate (Paulot,
Fan, &Horowitz, 2017). Finally, wewanted to provide the ability for the atmosphericmodel to handle amore
diverse suite of land‐atmosphere and ocean‐atmosphere linkages for comprehensive Earth system represen-
tation of not only heat and hydrology but also CO2, dust, reactive nitrogen, and organic carbon.

The focus of the present study is to document the atmosphere physics and chemistry developed for AM4.1, as
distinguished from the physical climate–focused AM4.0 (Zhao et al., 2018a, 2018b), for standalone atmo-
spheric applications. A more comprehensive discussion of coupled atmosphere‐ocean‐land Earth system
interactions in ESM4.1 is provided byDunne et al. (2020).We focus our analysis on evaluating the AMIP con-
figuration ofAM4.1 used forCMIP6, and document the differences in results betweenAM4.1 and otherGFDL
CMIPmodels, including AM4.0 (CMIP6) andAM3 (CMIP5). In the case of comparisonswith AM3, the differ-
ences in results reflect updates to both themodel configuration and the emissions (as discussed in section 2.4).

2. Model Description

A general schematic of AM4.1 forcing, dynamics, physics, aerosol, and chemistry interactions is provided in
Figure 1. The following sections discuss the formulations for these components in reference to their AM4.0
(Zhao et al., 2018a, 2018b) counterparts.

2.1. Physical Model Formulation

The physical formulation of AM4.1 is similar to that of AM4.0, but themodel top has been raised from 100 Pa
(~45 km) to 1 Pa (~80 km), and the number of vertical levels has been increased from 33 to 49, similar to the
48‐level structure of AM3. This enhanced vertical extent and resolution allows AM4.1 to represent strato-
spheric dynamics and chemistry and stratosphere‐troposphere coupling. The time step used in the dynami-
cal core for gravity wave and the Lagrangian dynamics is reduced from 150 s in AM4.0 to 130 s in AM4.1 for
increased numerical stability.

Like AM4.0, AM4.1 includes five tracers for water (specific humidity, liquid water, ice water, cloud amount,
and liquid droplet number concentration) and uses the same large‐scale and convective cloud parameteriza-
tions as in AM4.0. Cloud parameterizations in AM4.1 were retuned slightly compared to AM4.0 in order to
improve agreement with observed top‐of‐atmosphere shortwave and longwave radiative fluxes, in response
to initially excessive reflection from convective clouds over sub‐Saharan Africa, North Indian Ocean, and the
western tropical Pacific. In particular, the scale factor applied to the fall speed of ice clouds (c1 in Zhao
et al., 2018b) was reduced from 0.90 in AM4.0 to 0.85 in AM4.1 to increase ice water path and decrease out-
going longwave radiation. The cloud erosion timescale (τeros) in convectively active regions is decreased
slightly from 6.9 to 5.6 h to increase the absorbed shortwave radiation. The cloud erosion timescale under
other conditions is unchanged from AM4.0.

As described by Zhao et al. (2018b), nonorographic gravity wave drag in AM4.0/AM4.1 is parameterized fol-
lowing Alexander and Dunkerton (1999), but the parameters used in AM4.1 are modified from those in
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AM4.0 to improve stratospheric circulation. In AM4.1, the magnitudes of the nonorographic gravity wave
flux above 350 hPa for the tropics, northern extratropics, and southern extratropics (St, Sn, and Ss) are set
to 0.004, 0.005, and 0.0035 m2 s−2, respectively.

Land hydrology and ecosystem dynamics are represented in AM4.1 by the GFDL Land Model version 4.1
(LM4.1; Elena Shevliakova, personal communication), replacing the LM4.0 model used in AM4.0 (Zhao
et al., 2018b). LM4.1 includes advanced vegetation and canopy competition, fire, land‐use representation,
and dynamic atmospheric dust coupling.

2.2. Atmospheric Chemistry and Aerosol Scheme

AM4.1 includes interactive tropospheric and stratospheric gas‐phase and aerosol chemistry. The bulk aero-
sol scheme, including 18 transported aerosol tracers (see Table S1 in the supporting information), is similar
to that in AM4.0 (Zhao et al., 2018b), with the following updates: (1) ammonium and nitrate aerosols are
treated explicitly, with the sulfate–nitrate–ammonia thermodynamic equilibrium simulated using
ISORROPIA (Fountoukis & Nenes, 2007), as described by Paulot et al. (2016); (2) oxidation of sulfur dioxide
and dimethyl sulfide to produce sulfate aerosol is driven by the gas‐phase oxidant concentrations (OH, H2O2,
and O3) and cloud pH simulated by the online chemistry scheme (Paulot et al., 2016); and (3) the rate of
aging of black and organic carbon aerosols from hydrophobic to hydrophilic forms varies with calculated
concentrations of hydroxyl radical (OH), as described by Liu et al. (2011).

Unlike AM4.0, the AM4.1 model has an online representation of gas‐phase tropospheric and stratospheric
chemistry. The combined tropospheric and stratospheric chemistry scheme includes 18 prognostic (trans-
ported) aerosol tracers, 58 prognostic gas‐phase tracers, five prognostic ideal tracers, and 40 diagnostic (non-
transported) chemical tracers (Table S2), with 43 photolysis reactions, 190 gas‐phase kinetic reactions, and

Figure 1. Schematic description of forcing, dynamics, physics, aerosol, and chemistry interactions in AM4.1. Terms
depicted in gray (left) are prescribed as inputs to the model, while chemical processes included in the orange box
are calculated interactively within the atmospheric model. The light blue box (top) includes physical processes calculated
in AM4.1. The green box (bottom left) represents the land component (LM4.1), which is coupled to AM4.1. The dark
blue box (bottom right) includes specified ocean‐surface boundary conditions.
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15 heterogeneous reactions (Table S3). The tropospheric chemistry includes reactions of the NOx–HOx–Ox–

CO–CH4 system and oxidation schemes for other nonmethane volatile organic compounds. The strato-
spheric chemistry accounts for the major ozone loss cycles (Ox, HOx, NOx, ClOx, and BrOx) and heteroge-
neous reactions on liquid and solid stratospheric aerosols as in Austin et al. (2013). The base chemical
mechanism is updated from that in AM3 (Naik, Horowitz, et al., 2013), using gas‐phase and heterogeneous
chemistry updates from Mao, Horowitz, et al. (2013) and Mao, Paulot, et al. (2013), similar to the configura-
tion described by Schnell et al. (2018). We include heterogeneous reactions of HO2, NO2, N2O5, and NO3 on
the surfaces of all simulated aerosol types, with specified gamma values (given in Table S3). Note in particu-
lar that γ (HO2) is reduced from the value of 1 recommended by Mao, Horowitz, et al. (2013) to 0.2. We also
include the heterogeneous oxidation of SO2 on aerosols following Zheng et al. (2015). The heterogeneous
chemistry included in AM4.1 has a much stronger effect on oxidant levels than that in AM3, which used
γ(N2O5) = 0.1, γ(NO3) = 0.1, γ(NH3) = 0.05, γ(HO2) = 0, and γ(NO2) = 0, applied only to sulfate aerosols.
The chemical system is solved using an implicit Euler backward method with Newton‐Raphson iteration,
as in Horowitz et al. (2003). Photolysis rates are calculated interactively using the FAST‐JX version 7.1 code,
as described by Li et al. (2016), accounting for the radiative effects of simulated aerosols and clouds.

Dry deposition velocities for all aerosols are calculated interactively using a wind‐driven resistance method
(Gallagher et al., 2002), accounting for the effect of whitecaps over the ocean (Williams, 1982). The treatment
of wet deposition accounts for slower removal by frozen precipitation due to the Bergeron process in
mixed‐phase clouds (Liu et al., 2011). Dry and wet deposition for gases are as described by Paulot
et al. (2016).

Optical properties of aerosols are precalculated, as in AM4.0, using Mie theory assuming sphericity. The
extinction efficiency, single scattering albedo, and asymmetry parameter are tabulated as a function of wave-
length, aerosol type, aerosol size (for dust and sea salt), and relative humidity. Sulfate is assumed to be
internally mixed with black carbon for the calculation of optical properties. Unlike AM4.0, radiative effects
of nitrate aerosol are included in AM4.1 (as in Paulot, Paynter, et al., 2017).

2.3. AMIP (1980–2014) Simulation Configuration

We conduct AMIP simulations with AM4.1 over the period 1979–2014 using observed gridded sea surface
temperature (SST) and sea‐ice concentration boundary conditions from the reconstructions of Taylor
et al. (2000). Historical reconstructions of monthly solar spectral irradiances are from Matthes et al. (2017).
For radiation calculations, global monthly mean concentrations of greenhouse gases (GHGs), including
nitrous oxide (N2O), and ozone‐depleting substances (ODSs, including CFC‐11, CFC‐12, CFC‐113, and
HCFC‐22) are specified from Meinshausen et al. (2017). Global mean mixing ratios of methane (CH4) and
N2O are specified at the surface as lower boundary conditions for chemistry. Carbon dioxide (CO2) mixing
ratio is restored to observed global‐mean values with a one‐year timescale. The simulated global‐mean
CO2 and CH4 concentrations are used for radiation calculations.

2.4. Emissions

Annually varying time series of monthly anthropogenic and biomass burning emissions of ozone precursors
and aerosols (and their precursors) are from the Community Emissions Data System (CEDS; Hoesly
et al., 2018) and the data set of van Marle et al. (2017), respectively, developed in support of CMIP6.
Wildfire emissions are distributed vertically between the surface and 6 km, with location‐ and biome‐depen-
dent vertical profiles, as recommended by Dentener et al. (2006), similar to the treatment in AM3 (Donner
et al., 2011; Naik, Horowitz, et al., 2013). Natural emissions of NOx, CO, non‐methane volatile organic com-
pounds (NMVOC), hydrogen (H2), and ammonia (NH3) are generally the same as those considered by Naik,
Horowitz, et al. (2013), namely from the Precursors of Ozone and their Effects in the Troposphere (POET)
inventory for present day (corresponding to year 2000) (Olivier et al., 2003). Emissions of NH3 from sea bird
colonies, not accounted for in AM3, are included in AM4.1 following Riddick et al. (2012). The treatment of
marine ammonia emissions is also revised as described below.

Biogenic emissions of isoprene and monoterpenes are calculated online using the Parameterized Canopy
Environment Emission Activity (PCEEA algorithm; Guenther et al., 2006) in the Model of Emissions of
Gases and Aerosols from Nature (MEGAN v2.1; Guenther et al., 2012) as a function of simulated air tem-
perature and shortwave radiative fluxes, implemented as described by Rasmussen et al (2012). Leaf area

10.1029/2019MS002032Journal of Advances in Modeling Earth Systems

HOROWITZ ET AL. 4 of 26



indices for 17 plant functional types are based on AVHRR and MODIS data and are mapped to five
vegetation types (Emmons et al., 2010). These vegetation types and leaf area indices are independent of
those simulated by the LM4.1 dynamic vegetation model, due to a lack of coupling between the dynamic
vegetation properties simulated by LM4.1 and the atmospheric emissions module. We do not apply the
soil moisture or CO2 responses from Guenther et al. (2012). Future model development plans include
coupling biogenic emissions to LM4.1. Sea salt emissions are based on the parameterization of Monahan
et al. (1986) as in CM3 (Donner et al., 2011), but are modulated by sea surface temperature following
Jaeglé et al. (2011). Ocean ammonia emissions are calculated following Paulot et al. (2015), using the
simulated seawater concentration of NH4

+ in ESM4.1. Other marine emissions, including primary organic
aerosols (POA) and dimethyl sulfide (DMS), are calculated similarly to in CM3. DMS emissions are
calculated using an empirical formula as a function of a prescribed monthly climatology of DMS
concentration in sea water (Lana et al., 2011) and calculated wind speed at 10 m, as described by
Chin et al. (2002). Thus, oceanic emissions of POA, DMS, ammonia, and sea salt are dependent on the
simulated meteorology in the model.

Emission totals for year 2014 are shown in Table 1. Time series of annual global emissions in AM4.1 (using
CMIP6 inventories) are shown for select species in Figure 2 and compared with corresponding totals in AM3
(using CMIP5 inventories).

Sources of secondary organic aerosols (SOA) include an anthropogenic source from oxidation of the
simulated C4H10 hydrocarbon tracer by hydroxyl radical (with a 10% per‐carbon yield) and a biogenic
pseudo‐emission assuming a 10% per‐carbon yield from emissions of BVOCs, including isoprene and mono-
terpenes, from vegetation. This yield is in the range of values suggested by recent studies using more detailed
schemes for SOA production (e.g., Bates & Jacob, 2019; Pai et al., 2020). In year 2014, the sources of SOA are
83.84 Tg a−1 from BVOCs and 3.49 Tg a−1 from anthropogenic hydrocarbon oxidation.

Lightning NOx emissions are calculated interactively as a function of subgrid convection in AM4.1, as
diagnosed by the double‐plume convection scheme described by Zhao et al. (2018b). The lightning
NOx source is calculated as a function of convective cloud‐top height, following the parameterization
of Price et al. (1997), and is injected with the vertical distribution of Pickering et al. (1998), as in
AM3 (Naik, Horowitz, et al., 2013). The global total production of NOx by lightning is 3.59 Tg N for
year 2014.

Table 1
Annual Total Emissions for Year 2014 in AM4.1

Species Units Anthro Biomass burning Biogenic/natural Ocean Animals Soil Ship Aircraft Total

ACET Tg C a−1 1.47 0.98 15.09 0 0 0 0 0 17.53
BC Tg C a−1 7.83 1.77 0 0 0 0 0.17 0 9.76
C2H4 Tg C a−1 4.88 3.82 0 0 0 0 0.14 0 8.83
C2H5OH Tg C a−1 2.40 0.07 4.82 0 0 0 0 0 7.29
C2H6 Tg C a−1 5.22 2.71 0.80 0.78 0 0 0.17 0 9.67
C3H6 Tg C a−1 9.50 5.85 0.85 1.29 0 0 0.16 0 17.66
C3H8 Tg C a−1 5.05 0.53 1.63 1.05 0 0 0.49 0 8.76
C4H10 Tg C a−1 52.93 2.34 0 0 0 0 1.10 0 56.38
C10H16 Tg C a−1 0 1.24 57.37 0 0 0 0 0 58.61
CH2O Tg C a−1 1.00 1.94 0 0 0 0 0 0 2.94
CH3OH Tg C a−1 0.30 3.24 85.61 0 0 0 0 0 89.14
CO Tg a−1 612.40 356.68 159.24 19.80 0 0 0.69 0.57 1,149.37
DMS Tg a−1 0 0 0 42.72 0 0 0 0 42.72
DUST Tg a−1 0 0 0 0 0 2,507.67 0 0 2,507.67
H2 Tg a−1 24.50 9.01 0 2.98 0 2.98 0.03 0 39.48
ISOP Tg a−1 0.00 0.57 499.78 0 0 0 0.00 0 500.36
NH3 Tg a−1 60.82 4.30 0 3.89 0.15 2.95 0.02 0 72.13
NO Tg N a−1 35.52 6.23 3.29 0 0 3.59 6.89 0.93 56.45
OM Tg a−1 31.26 26.81 0 16.21 0 0 0.20 0 74.48
SSALT Tg a−1 0 0 0 6,254.24 0 0 0 0 6,254.24
SO2 Tg S a−1 51.26 1.14 3.59 0 0 0 4.44 0.14 60.56
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Dust emissions are calculated dynamically online in the land component, LM4.1, as a function of wind
speed, topography, vegetation cover, snow cover, soil moisture, and land type, as described by Evans
et al. (2016).

As in AM3, direct stratospheric injection of SO2 from volcanic eruptions and emissions of carbonyl sulfide
(COS) are not considered in AM4.1. Instead, we specify time series of stratospheric aerosol optical properties,
accounting for not only the volcanic contribution to stratospheric aerosol abundance but also other natural
and anthropogenic contributions. Tropospheric emissions of SO2 from continuously degassing and explosive
volcanoes are treated in the same way as in AM3 (Donner et al., 2011), with a climatological total of
3.59 Tg S a−1.

3. Results: Physical Climate Simulation (AMIP, 1980–2014)
3.1. Surface Air Temperature

Comparison of surface air temperature over land with observations from CRU TS (Figure 3) illustrates the
substantial decrease in overall root mean square error (RMSE) achieved in AM4.1 (RMSE = 1.92°C) from
the previous generation full‐chemistry AM3 (RMSE = 2.18°C) and similar, if slightly degraded, pattern to
AM4.0 (RMSE = 1.85°C). The most notable difference from AM3 to AM4.0 and AM4.1 is an improvement
in boreal warm biases and South American cold biases.

3.2. Precipitation

Comparison of precipitation with observations from GPCP v2.3 (Figure 4) also illustrates the substantial
decrease in overall RMSE achieved in AM4.1 (RMSE = 0.83 mm d−1) from the previous generation full‐
chemistry AM3 (RMSE = 1.02 mm d−1) and a similar pattern to AM4.0 (RMSE = 0.85 mm d−1). The most
notable difference from AM3 to AM4.0 and AM4.1 is an improvement in Amazon dry biases and in wet
biases over Australia and the Indian Ocean.

Figure 2. Global annual totals (in Tg a−1, using mass as indicated on y‐axis label) for anthropogenic (fossil fuel + biomass burning + ship + aircraft) emissions of
NO, CO, SO2, NH3, BC, and primary OM in AM3 (blue, CMIP5 emissions) and AM4.1 (red, CMIP6 emissions) AMIP simulations.
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3.3. Circulation

Comparison of zonal mean zonal winds with the ERA40 reanalysis (Figure 5) illustrates a substantial
decrease in overall RMSE in AM4.1 (RMSE = 1.32 m s−1) from the previous generation high‐top full‐chem-
istry AM3 (RMSE = 1.75 m s−1). The AM4.1 RMSE is greater than that in the low‐top AM4.0
(RMSE = 1.00 m s−1), owing to a westerly wind bias in the equatorial stratosphere, and a weak,
equatorward‐shifted Arctic stratospheric jet in AM4.1. The representation of the stratospheric wintertime
westerly polar jet associated with the Antarctic vortex is significantly improved in AM4.1 (not shown) com-
pared with AM3 (Donner et al., 2011), in which the westerlies were excessively strong (leading to a too‐cold
Antarctic vortex). We plan to work towards further improving the stratospheric circulation in future ver-
sions of AM4.1 through improvement in our representation of parameterized gravity wave drag.
Tropospheric circulation patterns in AM4.1 are very similar to those in AM4.0.

Figure 3. Annual mean surface air temperatures (°C) in AM4.1 AMIP simulation (1980–2014) and CRU‐TS‐3.22 observations (1979–2013). Differences between
simulated and observed surface air temperatures in AM4.1, AM4.0, and AM3 AMIP simulations.
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3.4. Stratospheric Variability

Comparison of statistics for sudden stratospheric warmings with the ERA40 reanalysis (Figure 6) illustrates
an improvement in AM4.1 with respect to capturing events in the coldest months (December–January),
which were largely missed in AM4.0 (Zhao et al., 2018a), even though AM4.0 already performs quite well
among low‐top atmospheric models (Charlton‐Perez et al., 2013). In the surrounding months (November,
February), AM4.1 overestimates warming events, whereas AM4.0 matches the reanalysis data fairly well.

3.5. Radiation Fluxes

Comparison of top‐of‐atmosphere (TOA) net radiation with CERES EBAF observations (Figure 7) illustrates
the substantial decrease in overall root mean square error (RMSE) achieved in AM4.1 (RMSE = 7.2 Wm−2)

Figure 4. Annual mean precipitation (mm day−1) for 1980–2014 in AM4.1 AMIP simulation and GPCP v2.3 observations. Differences between simulated and
observed precipitation in AM4.1, AM4.0, and AM3 AMIP simulations.
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from the previous generation full‐chemistry AM3 (RMSE = 8.6 W m−2) and similar, if slightly degraded,
pattern to AM4.0 (RMSE = 6.8 W m−2). The most notable difference from AM3 to AM4.0 and AM4.1 is
associated with an improvement in areas of tropical convection along the intertropical convergence zone
(ITCZ) that had previously been too absorbing and increased absorption in northern boreal regions that
had been previously too reflective, as discussed by Zhao et al. (2018a). The most notable differences
between AM4.0 and AM4.1 are associated with a decrease in the global TOA from a near‐zero bias in
AM3 (0.02 W m−2) to a slight negative bias in AM4.0 (−0.14 W m−2) and substantial low bias in AM4.1
(−0.80 W m−2). This increase in bias is due in part to the increased albedo of northern boreal regions
associated with snow masking depth in LM4.1 (Elena Shevliakova, personal communication and also in
part to differences over Antarctica associated with the prescribed albedo of snow on glaciers that was
modified late in the development cycle of ESM4.1 to address Southern Ocean dynamics, as discussed by
Dunne et al. (2020).

Figure 5. Annual mean zonal mean zonal wind (m s−1) in AM4.1 AMIP simulation (1980–2014) and ERA40 reanalysis (1981–2000). Differences between
simulated and observed zonal winds in AM4.1, AM4.0, and AM3 AMIP simulations.
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3.6. Lightning Flash Frequency

Figure S1 shows the lightning flash frequency retrieved from the space-
borne Optical Transient Detector (OTD) and Lightning Imaging Sensor
(LIS) (Cecil et al., 2014), compared with simulated values from AM3
and AM4.1. In both AM3 and AM4.1, lightning flash frequency is parame-
terized as a function of convective cloud top height, following Price
et al. (1997), but the two models use different parameterizations of cumu-
lus convection (Zhao et al., 2018b). While the overall correlation between
model and observations is lower in AM4.1 than AM3, there are some nota-
ble areas of improvement in the representation of flash frequency, includ-
ing a reduction of the high biases present in AM3 over the Amazon and
the maritime continent, improving agreement with observations.

4. Results: Simulation of Atmospheric Composition
4.1. Ozone

In this section, we evaluate model simulations of ozone, including surface
ozone concentrations relevant for air quality and column ozone abun-
dances relevant for climate.
4.1.1. Surface Ozone
We focus on the seasonal mean of the maximum daily 8‐h average
(MDA8) surface ozone over the period 2005–2014, when observations

are available from densely clustered monitoring sites across northern mid‐latitude populated regions
(Figure 8 for MAM, Figure 9 for JJA). Observations were obtained from the Tropospheric Ozone
Assessment Report (TOAR) Database for 2005–2014 (Schultz et al., 2017) and a monitoring network oper-
ated since 2013 by China's Ministry of Environmental Protection (CNMEP, http://106.37.208.233:20035/).
Observations are averaged onto the same 1° × 1° grid as AM4.1. We compare simulated ozone from the
AM4.1 AMIP simulation with that from the AM3 AMIP simulation.

Surface MDA8 ozone in AM3 is biased high by 12 ppb on average during MAM (Figure 8b) and by up to
20 ppb over the easternU.S. during summer (Figure 9b), as documented in previous studies (Fiore et al., 2014;
Lin, Fiore, Cooper, et al., 2012; Lin, Fiore, Horowitz, et al., 2012; Lin et al., 2017; Rieder et al., 2015). AM4.1
shows substantially reduced biases in mean ozone for both spring and summer over the eastern U.S. and
Europe (Figures 8c and 9c). This dramatic improvement in the simulation of surface ozone concentrations
results from a combination of updates to the chemical mechanism from AM3 to AM4.1, including updates
to the isoprene oxidation scheme (Mao, Paulot, et al., 2013) and the representation of heterogeneous reac-
tions (Mao, Fan, et al., 2013), and the change from CMIP5 emissions in AM3 to CMIP6 emissions in
AM4.1 (section 2.3). The shallow surface layer of the model (30 m thick) may also have an impact on the
comparison with surface sites. Zhao et al. (2018a) found a significant improvement in diagnosed 2‐m tem-
peratures associated with this shallower surface layer.

To further explore the causes of the differences in surface ozone abundances between AM3 and AM4.1, we
conduct two additional simulations—an AM4.1 simulation with nudged meteorology and an additional
AM4.1 nudged simulation with AM3‐like chemistry (AM4.1_AM3Chem; Lin et al., 2019). The two experi-
ments use the same CMIP6 emissions and have nearly identical meteorology (as a result of the nudging),
allowing us to isolate the influence of changes in chemistry alone. Seasonal‐mean MDA8 ozone from these
simulations are plotted in Figures S2–S5.

Similar to the results from AM3 (Figures 8b and 9b), surface MDA8 ozone in AM4.1_AM3Chem is biased
high by 11 ppb on average during spring (Figure S2b) and by up to 20 ppb over the eastern U.S. during sum-
mer (Figure S3b). Switching the chemistry scheme from AM3 to AM4.1 leads to substantial reductions in
mean ozone biases for both spring and summer over the eastern U.S. and Europe (Figures S2c and S3c),
but the model underestimates springtimeMDA8 ozone over central eastern China by 20 ppb (Figure S2c ver-
sus CNMEP observations in Figure S2a).

Figure 6. Monthly and annual (ANN) stratospheric sudden warming
(SSW) frequency for 1870–2014 from AM4.0 and AM4.1, and 1957–2002
from ERA40. SSW is defined as in Charlton and Polvani (2007). Error bars
indicate the 95% confidence interval (the statistical test of the SSW
frequency is calculated as in Charlton et al., 2007).
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Observations show more severe springtime ozone pollution over central eastern China and Mexico than in
the U.S. and Europe. This regional contrast is not simulated in either of our experiments. Particularly, the
enhanced heterogeneous chemistry in AM4.1 (section 2.2; Mao, Horowitz, et al., 2013; Mao, Fan, et al., 2013)
likely leads to excessive heterogeneous loss of HOx and NOx radicals over eastern China and Mexico, where
aerosol loadings are high during the spring season. For summer over the southeastern U.S., where high
mean‐state ozone biases are found in many current‐generation CTMs and CCMs (Fiore et al., 2009;
Young et al., 2018), the AM4.1 experiment shows remarkable agreement with observations. However, on
the basis of analysis conducted for an intensive field campaign, Travis et al. (2016) suggested that the com-
mon model biases in simulating summertime ozone over the southeastern U.S. may reflect a combination
of excessive NOx emissions (too high by 50%) and the deep model surface layer that cannot resolve
near‐surface ozone gradients. A balanced view is needed to interpret the reduced ozone biases in the
AM4.1 experiment.

Figure 7. Annual mean net radiation flux at top of atmosphere (W m−2) in AM4.1 AMIP simulation (1980–2014) and CERES EBAF v2.8 observations
(2000–2015). Differences between simulated and observed net radiation flux in AM4.1, AM4.0, and AM3 AMIP simulations.
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Our results suggest the complexity of various sources, sinks, transport, and chemistry in influencing the
simulation of surface ozone. In the future, process‐based assessments, not only for means but also for varia-
bility and extreme events, are needed to fully evaluate how the choices of different emission data sets, che-
mical mechanisms, and deposition schemes affect simulations of surface ozone and related tracers.
4.1.2. Tropospheric Ozone Column
We compare climatological annual mean tropospheric ozone columns simulated by AM3 (mean over 2000–
2008) and AM4.1 (2005–2014) with those derived from the OMI‐MLS (Ziemke et al., 2019) (Figure 10). In the
analysis shown here, AM3's native ozone output on model levels is used to calculate tropospheric ozone

Figure 8. MAMmean surface MDA8 ozone mixing ratios (ppbv) for 2000–2008 from (a) TOAR observations regridded to
the same 1° × 1° grid as AM4.1, (b) AM3 AMIP simulation, (c) AM4.1 AMIP simulation. Here, mn is the mean and
rmsd is the root‐mean‐square deviation between observations and simulations.
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column using the WMO tropopause definition, while for AM4.1, the tropospheric ozone column (tropoz) is
diagnosed at every time step, by applying the WMO tropopause definition using model simulated
temperature. The global mean tropospheric ozone columns simulated by AM3 and AM4.1 are 35 DU and
31 DU, respectively, compared to the OMI/MLS value of 30 DU. While AM3 showed consistent high
biases globally except over the Antarctic, AM4.1 shows an interhemispheric pattern in the biases with
high values in the Northern Hemisphere mid‐latitudes and over continents and low values in the
Southern Hemisphere extra‐tropics. This pattern is consistent with global chemistry‐climate models
evaluated against the OMI/MLS climatology by Young et al. (2013) for a slightly different time period. An
interesting feature in AM4.1 is the strong positive bias over Oceania, possibly related to the different

Figure 9. Same as Figure 8, but for JJA.
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biomass burning emissions applied in the two models. AM3 exhibited an average high bias of 21.7%, which
has been reduced to 7.3% in AM4.1; accordingly the RMSE has been reduced considerably, from 7.1 DU in
AM3 to 4.6 DU in AM4.1.
4.1.3. Total Ozone Column
Figure 11 shows the evaluation of modeled time series of total column ozone against two data sets for 1980–
2015, namely, Multi‐Satellite Merged Total Column NASA and NOAA product from Frith (2013; SBUV;
open triangles) and version 3.4 of the National Institute of Water and Atmospheric Research—Bodeker
Scientific (NIWA‐BS; closed circles) total column ozone database. AM3 results are plotted for 1980–2008 per-
iod, while AM4.1 results are for 1980–2014. The comparison is shown for the annual average globally, in the
tropics, and in southern and northern mid‐latitudes, and for March in the Arctic and October in the
Antarctic. Globally (Figure 11a), absolute values of total column ozone for AM3 were biased high compared
to both data sets, whereas AM4.1, on the other hand, is biased low. Both models generally capture the trend
in total column ozone, although the evaluation of AM3 is truncated at 2008. As suggested by the greater cor-
relation coefficients for AM4.1 compared with AM3, AM4.1 is better able to capture the observed interann-
ual variability and trends of global mean total column ozone. In the tropics (Figure 11b), total ozone column
values remain lower than observed in AM4.1, as opposed to higher in AM3. Consistent with observations,
bothmodels simulate negligible trends in total column ozone in the tropics; however, AM4.1 exhibits greater
skill in capturing the observed evolution of total column ozone. In the northern mid‐latitudes (Figure 11c),
AM4.1 differs more from observations than AM3 does, although with fairly similar skill in simulating the
observed time evolution of total column ozone. The comparison is opposite for the southern mid‐latitudes
(Figure 11d), where AM4.1 is much closer to observed values than AM3 with similar correlations. In the
Arctic in March (Figure 11e), AM4.1 reproduces the observed total ozone column values slightly better than
AM3, however both have fairly low skill in reproducing the observed evolution. In the Antarctic in October
(Figure 11f), AM4.1 exhibits greater skill in simulating ozone depletion compared to AM3 both in terms of
trends and absolute values. This improvement likely results from the improved dynamical representation of
the Antarctic polar vortex in AM4.1 (section 3). Overall, AM4.1 compares slightly better against observations
of total column ozone than AM3.

Figure 10. Climatological mean tropospheric ozone column in AM3 (upper left; Dobson Units, DU), AM4.1 (lower left; DU), and the % bias compared to
the OMI/MLS satellite estimate of the Tropospheric Ozone Column (Ziemke et al., 2019) for AM3 (upper right; %) and AM4.1 (lower right; %). RMSE is provided
in DU.
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4.2. Carbon Monoxide

The simulated tropospheric CO columns are evaluated against CO retrievals from the MOPITT
(Measurements of Pollution in The Troposphere) instrument in Figure 12. We use the MOPITT V8
Joint (NIR + TIR) retrievals (Deeter et al., 2019) during 2001–2014, which are available from the

Figure 11. Comparison of time series of total ozone column (DU) for the annual mean (a) global mean (90°S–90°N), (b)
tropics (25°S–25°N), (c) northern mid‐latitudes (35°N–60°N), (d) southern mid‐latitudes (35°S–35°N), and for the (e)
March mean in the Arctic (60°N–90°N), and (f) October mean in the Antarctic (60°S–90°S) from AM3 (red) and AM4.1
(blue) against NASA and NOAA observations from the multisatellite merged ozone total column (Frith, 2013) (SBUV;
open triangles) and version 3.4 of the NIWA‐BS total column ozone database (Bodeker et al., 2005) (NIWA; closed
circles). The numbers in each panel indicate linear correlation coefficient (R) for model against each of the measurement
data sets (top for NIWA and bottom for SBUV).
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NASA Earthdata archive (https://earthdata.nasa.gov). The model is interpolated to the gridded monthly
MOPITT observations and the averaging kernel for each grid is applied to the simulated monthly mean
CO profiles.

The tropospheric CO columns are in general higher in AM4.1 than AM3, in better agreement with MOPITT
retrievals in terms of magnitudes (RMSE reduced from (2.6–2.7) × 1017 cm−2 to (1.6–1.8) × 1017 cm−2) and
spatial distribution (r2 increased from 0.7–0.9 to 0.8–0.9). Compared to AM3, AM4.1 reduces the underesti-
mations in column CO in the Northern Hemisphere, but overestimates column CO in the Southern
Hemisphere, especially during summer. This is in part due to lower OH levels in AM4.1 than AM3.

To evaluate surface CO, we use measurements from a globally distributed network of air sampling sites
maintained by the Global Monitoring Laboratory (GML) of the National Oceanic and Atmospheric
Administration (NOAA) (Pétron et al., 2019; data available at ftp://aftp.cmdl.noaa.gov/data/trace_gases/
co/flask/). Surface CO observations during 1988–2014 are used to evaluate model performance (Figure 13).

AM4.1 simulates higher surface CO concentrations than AM3 over the Southern Hemisphere, and slightly
overestimates surface CO concentrations by <5 ppb when compared to surface observations. Over the
Northern Hemisphere, AM4.1 largely reduces the negative biases that occurred in AM3, with a mean bias
of ±20 ppb over most GMD sites. This is consistent with the comparisons to the MOPITT retrievals shown
above. In addition, compared to AM3, AM4.1 better captures the seasonal cycles (with correlation coefficient
R > 0.5) at most sites and better captures the latitudinal gradient as well (R = 1.0 versus R = 0.9).

Comparisons of surface CO concentrations over pristine sites show significant improvement in AM4.1 over
AM3 across latitudes from South to North. In the Southern Hemisphere, such as at South Pole (SPO),
Ushuaia (USH), and Easter Island (EIC) sites, the underestimation of surface CO concentrations by AM3
are reduced in AM4.1. In the Northern Hemisphere, such as at Mauna Loa (MLO), Barrow (BRW), and
Alert (ALT) sites, both surface concentrations and monthly variations are improved significantly in
AM4.1 compared to AM3. These improvements are mainly associated with improved chemistry in AM4.1.

Figure 12. Absolute difference in tropospheric CO column between AM3 and MOPITT (left panel) and AM4.1 and MOPITT (right panel) for winter
(December–January–February, DJF, top) and summer (June–July–August, JJA, bottom).
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4.3. Aerosols

We first evaluate concentrations of aerosols in surface air. Figure 14 (top panels) compare simulated concen-
trations of sulfate and nitrate aerosols from AM4.1 with observations over the United States from the
IMPROVE network. The model successfully captures the wide range of observed sulfate aerosol concentra-
tions. While nitrate concentrations are well correlated with observations (R = 0.74), simulated concentra-
tions are generally too high (normalized mean bias [NMB] = +80%). This bias is larger than in Paulot
et al. (2016), where nitrate aerosols are assumed to deposit rapidly like nitric acid. Simulated concentrations
of sulfate and nitrate in precipitation are compared with observations from the NADP network in the lower
panels of Figure 14. The rainwater abundances of sulfate and nitrate are well correlated with observations,
but with a low bias for sulfate (NMB = −19%) and a high bias for nitrate (NMB = +35%).

Figure 15 compares simulated concentrations of sulfate, dust, and sea salt aerosols from AM3, AM4.0, and
AM4.1 with observations from the University of Miami network (Savoie & Prospero, 1977). The model suc-
cessfully captures the wide range of observed sulfate aerosol concentrations. For sulfate, the RMS error ver-
sus observations is reduced in AM4.1 (0.20 μg m−3) from AM3 and AM4.0 (both 0.22 μg m−3), and the
correlation is improved (r = 0.93 in AM4.1, r = 0.89 in AM3 and AM4.0). The agreement between simulated
and observed dust improves from AM3 to AM4.0, but then degrades in AM4.1, reflecting the shift from pre-
scribed to interactive source regions for dust in LM4.1. The RMSE for simulated sea salt is reduced signifi-
cantly in AM4.1 (0.35 μg m−3) compared with AM3 (0.47 μg m−3) and AM4.0 (0.49 μg m−3), as a result of
updates to the emissions and deposition parameterizations in AM4.1.

We next evaluate the simulated AOD against measurements from the AERONET sunphotometer network
(Holben et al., 1998) in Figure 16. Here we use the quality assured and cloud screened level 2 version 2
AOD data (Smirnov et al., 2000). For comparison, we also show the results from AM4.0 (middle) and AM3
(bottom). Both AM4.0 and AM4.1 exhibit higher correlation (0.89 and 0.9) and lower RMS (0.07 and 0.08)
with AERONET observations than AM3 (0.81 and 0.09, respectively). In particular, the large positive biases
in the tropics and equatorial regions are reduced, which reflects themore efficient removal of aerosol by con-
vective precipitation (Paulot et al., 2016). AM4.1 exhibits a greater positive bias than AM4.0 over theMidwest
United States, associated with higher dust loading and nitrate aerosol (not included in AM3 and AM4.0).

Figure 13. Comparison of surface CO mixing ratios (ppbv) from AM4.1 (red) and AM3 (blue) against NOAA Global Monitoring Division (GMD) flask
observations (Pétron et al., 2019, for 1988–2014). Left panels show model bias (top) and correlation coefficient (bottom) versus observations, plotted by
station latitude. Right panels show monthly time series comparisons at selection stations. The root mean square error (RMSE) and correlation coefficient (R) are
indicated on plots.
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Figures 17 and S6 and compare the regional monthly mean AOD simulated by AM3, AM4.0, and AM4.1
with observations from the MODIS (Levy et al., 2007) and MISR (Kahn et al., 2009) instruments. AM4.0
and AM4.1 have reduced the seasonal contrast between winter and summer months, in better agreement
with observational constraints. The spring maximum over East Asia and the North Pacific is also better cap-
tured with AM4.0 and AM4.1. The AM3 high biases over the Caribbean Sea and maritime continent are
reduced consistent with the comparison against AERONET.

These improvements primarily reflect changes in the treatment of aerosol removal, including reduced
removal by frozen precipitation formed by the Bergeron process andmore efficient scavenging by convective
precipitation (Paulot et al., 2016). AM4.1 exhibits greater bias over Asia than AM4.0, which primarily reflects
higher optical depth from dust and ammonium nitrate. Uncertainties in Asian SO2 and NH3 emissions
(Zhang et al., 2009) and aerosol hygroscopic growth may also contribute to the AM4.1 high bias over this
region (Paulot et al., 2018).

Figure 14. Comparison of AM4.1 (2000–2014) against IMPROVE (a,b) and NADP (c,d) observations of concentrations in surface air (top) and in precipitation
(bottom) of sulfate (left) and nitrate (right).
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Figure 15. Comparison of simulated (AM3, 1979–2008; AM4.0, 1980–2014; and AM4.1, 1980–2014) and observed
(University of Miami) annual mean surface concentrations (μg m−3) of (first row) sulfate, (second row) dust, and
(third row) sea salt sodium at 28 locations and (bottom) their ratios (simulated/observed) at each location (for AM4.1
only). Shaded contours indicate simulated surface concentrations (top colorbar) and symbols indicate the ratio of
simulated/observed concentrations (bottom colorbar, symbol points upwards if ratio greater than one, downwards if less
than one).
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Figure 16. Comparison of simulated aerosol optical depths (550 nm) with AERONET observations over the 2000–2014
period for (top) AM4.1, (middle) AM4.0, and (bottom) AM3 AMIP simulation. Dashed lines in left panels denote
slopes of 0.5 and 2. Color in right panels shows the percentage difference between model and AERONET
(i.e., 100% × [model − AERONET]/AERONET).
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4.4. Hydroxyl Radical (OH) and Methane Lifetime

Here, we evaluate the climatological mean hydroxyl (OH) radical simulated by AM4.1, as OH is the primary
atmospheric oxidant determining the abundance and lifetime of several short‐lived climate forcers, includ-
ing methane. The simulation of OH depends on the chemical mechanism, particularly the representation of
isoprene photooxidation (Archibald et al., 2010; Bates & Jacob, 2019). Differences in emissions, meteorology,
and photochemical mechanisms across models also lead to differences in OH (Wild et al., 2020).
Climatological mean (1980–2014) global airmass‐weighted tropospheric OH simulated by AM4.1 is
10.4 × 105 molecules cm−3, about 18% lower than that simulated by AM3, but is within the range of values
reported for ACCMIP models for the 2000s (Naik, Voulgarakis, et al., 2013). Consequently, the mean whole‐
atmosphere chemical lifetime of methane (calculated as the global methane burden divided by global total
loss) in AM4.1 is 8.5 years; lifetime against loss by reaction with tropospheric OH is 9.7 years, which is 13%
greater than the AM3 value of 8.6 years (1981–2000), but still lower than the observationally derived estimate
of 11.2 ± 1.3 years (Prather et al., 2012). Figure 18 shows the comparison of tropospheric OH distribution for
12 regions simulated by AM4.1 with estimates from AM3, ACCMIP ensemble mean, and the climatology of

Figure 17. Monthly climatology (2003–2014) of aerosol optical depth simulated by AM3 (purple line), AM4.0 (green line) and AM4.1 (orange line) and
measured by MODIS (TERRA: star, AQUA: cross) and MISR (filled circles) satellite instruments. Each panel represents a spatial average over the
corresponding region on the background map. The numbers in each box show the correlation coefficients (left) and normalized root mean square error (right)
compared to MODIS‐TERRA (purple: AM3, green: AM4.0, orange: AM4.1).
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Spivakovsky et al. (2000). AM4.1 simulates reduced OH levels compared to AM3 throughout the
troposphere, possibly because of differences in emissions and chemical mechanisms between the two
model versions. In particular, the lower lightning NOx in AM4.1 versus AM3 acts to lower OH because of
the strong sensitivity of OH to lightning NOx emissions (Murray et al., 2013). Relative to the Spivakovsky
et al. climatology, AM4.1 exhibits a reduced high bias compared with AM3, but has too low OH,
particularly in the tropical upper troposphere.

5. Sensitivities to Greenhouse Gases, Aerosols, and SST Perturbations

Table 2 shows the net radiative flux perturbations that result from historical changes in anthropogenic for-
cing agents and from idealized changes in CO2 and SST. Comparison of these radiative metrics between
AM3, AM4.0 and AM4.1 indicates that effective radiative forcings (ERF) from preindustrial to present‐day
changes in greenhouse gases and aerosols are nearly identical between AM4.0 and AM4.1. However, the
ERF from quadrupling CO2 is significantly lower in AM4.1, mostly because of the inclusion of interactive
ozone (colder stratospheric temperatures reduce the rate of ozone chemical loss) but also partially resulting
from increased dust emissions from LM4.1 (related to increased fires under elevated‐CO2 conditions). The
Cess feedback, the change in net radiative flux resulting from an increase of SSTs by 2K, is significantly more
negative in ESM4.1 (corresponding to a weaker Cess sensitivity), likely resulting from increased emissions of
salt, dust, and BVOCs with increasing temperatures in ESM4.1. While comparison with previous‐generation
models is complicated by changes in the AMIP configuration since the AM3 model simulations were con-
ducted (in particular, updating the “present‐day” conditions from representing 1990 conditions to 2014 con-
ditions), some assessment of these differences can be made using AM4.0 simulations conducted for 1990
conditions (as in Zhao et al., 2018a). The most important differences between AM3 and AM4.0 are a

Figure 18. Climatological (1980–2014) annual mean airmass‐weighted tropospheric OH concentration averaged globally
(top‐most row) and regionally for individual atmospheric subdomains from AM4.1 (black) compared with those
from AM3 (1980–2008, red), ACCMIP ensemble mean (orange), and climatological mean values from Spivakovsky
et al. (2000) (purple). Values for AM4.1 and AM3 also show +/− standard deviation about the mean.
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decrease in the magnitude of the negative aerosol ERF from AM3 to AM4.0, an increase in the 4xCO2 ERF
consistent with an update to the treatment of CO2 radiative bands (Zhao et al., 2018b), and a strengthening of
the negative Cess feedback. The decrease in the magnitude of the aerosol ERF from AM3 to AM4.0 has been
attributed by Zhao et al. (2018b) to a decrease in the strength of the aerosol indirect effect, resulting from the
increase in horizontal resolution and improvements to the representations of aerosol convective wet
deposition (Paulot et al., 2016) and aerosol activation.

6. Summary

AM4.1 includes considerable advances in resolution and physics as in AM4.0 (Zhao et al., 2018a, 2018b) as
well as a comprehensively revised suite of chemistry parameterizations to improve consistency in treatment
across species and with advances in the underlying science over the last decade. AM4.1 is able to maintain
the fidelity of AM4.0 while substantially increasing in comprehensiveness and associated climate‐chemistry
interactions and feedbacks. This development effort has also led to considerable improvement in model fide-
lity compared to GFDL's previous‐generation coupled chemistry‐climate model (AM3) with respect to
observed atmospheric composition for aerosol, CO, ozone, as well as climate phenomena such as sudden
stratospheric warmings.

Data Availability Statement

Data are provided at 10.22033/ESGF/CMIP6.1407. Model code is provided at https://data1.gfdl.noaa.gov/
nomads/forms/esm4/. The input data are provided at ftp://data1.gfdl.noaa.gov/users/ESM4/
ESM4Documentation/GFDL‐ESM4/inputData/ESM4_rundir.tar.gz.

References
Alexander, M. J., & Dunkerton, T. J. (1999). A spectral parameterization of mean‐flow forcing due to breaking gravity waves. Journal of the

Atmospheric Sciences, 56(24), 4167–4182. https://doi.org/10.1175/1520‐0469(1999)056<4167:ASPOMF>2.0.CO;2
Archibald, A. T., Cooke, M. C., Utembe, S. R., Shallcross, D. E., Derwent, R. G., & Jenkin, M. E. (2010). Impacts of mechanistic changes on

HOx formation and recycling in the oxidation of isoprene. Atmospheric Chemistry and Physics, 10(17), 8097–8118. https://doi.org/
10.5194/acp‐10‐8097‐2010

Austin, J., Horowitz, L.W., Schwarzkopf, M. D., Wilson, R. J., & Levy, H. II (2013). Stratospheric ozone and temperature simulated from the
preindustrial era to the present day. Journal of Climate, 26(11), 3528–3543. https://doi.org/10.1175/JCLI‐D‐12‐00162.1

Bates, K. H., & Jacob, D. J. (2019). A new model mechanism for atmospheric oxidation of isoprene: Global effects on oxidants, nitrogen
oxides, organic products, and secondary organic aerosol. Atmospheric Chemistry and Physics, 19(14), 9613–9640. https://doi.org/10.5194/
acp‐19‐9613‐2019

Bodeker, G. E., Shiona, H., & Eskes, H. (2005). Indicators of Antarctic ozone depletion. Atmospheric Chemistry and Physics, 5, 2603–2615.
Retrieved from https://acp.copernicus.org/articles/5/2603/2005/

Cecil, D. J., Buechler, D. E., & Blakeslee, R. J. (2014). Gridded lightning climatology from TRMM‐LIS and OTD: Dataset description.
Atmospheric Research, 135‐136, 404–414. https://doi.org/10.1016/j.atmosres.2012.06.028

Charlton, A., & Polvani, L. M. (2007). A new look at stratospheric sudden warmings Part I: Climatology and modeling benchmarks. Journal
of Climate, 20, 449–469. https://doi.org/10.1175/JCLI3996.1

Charlton, A., Polvani, L. M., Perlwitz, J., Sassi, F., Manzini, E., Shibata, K., et al. (2007). A new look at stratospheric sudden warmings Part
II: Evaluation of numerical model simulations. Journal of Climate, 20, 470–488. https://doi.org/10.1175/JCLI3994.1

Table 2
Effective Radiative Forcings and Feedbacks (in Wm−2) to Greenhouse Gases, Aerosols, Anthropogenic Forcings, Land Use,
Quadrupling CO2, and SST Perturbations

AM3 (1990) AM4.0 (1990) AM4.0 (2014) AM4.1 (2014)

GHG ERF 2.63 2.61 3.14 3.22
Aerosol ERF −1.69 −0.96 −0.73 −0.70
Anthro ERF N/A N/A 2.33 2.37
LU ERF N/A N/A −0.33 −0.28
4xCO2 ERF 7.19 N/A 8.23 7.72
Cess feedback (SST + 2 K) −2.86 −3.59 −3.64 −4.14

Note: The AM3 (1990) and AM4.0 (1990) experiments are identical to those described by Zhao et al. (2018a). The AM4.0
(2014) and AM4.1 (2014) experiments use 30‐year climatological simulations, i.e., the piClim experiments from the
Radiative Forcing Model Intercomparison Project (RFMIP; Pincus et al., 2016).

10.1029/2019MS002032Journal of Advances in Modeling Earth Systems

HOROWITZ ET AL. 23 of 26

Acknowledgments
We thank GFDL's Model Development
Team, Modeling Systems Division, and
Operations group for keeping ESM4.1
development and implementation
going through many technical
challenges. We thank the GFDL Data
Portal team for their tireless work on
developing and maintaining the vast
infrastructure needed to enable
publication of data output from our
CMIP6 models to the Earth System
Grid. We are also grateful to the many
groups that freely share the
observations used here to evaluate
various aspects of chemistry and
composition simulated by the models
and to the input4MIPs activity (https://
esgf‐node.llnl.gov/projects/
input4mips/) for making available the
boundary condition and forcing data
sets needed for performing model
simulations. This manuscript benefited
from internal GFDL reviews by Leo
Donner and Songmiao Fan. Discussions
with Songmiao Fan were helpful in
improving the formulation of dry and
wet deposition of aerosols.

https://doi.org/10.22033/ESGF/CMIP6.1407
https://data1.gfdl.noaa.gov/nomads/forms/esm4/
https://data1.gfdl.noaa.gov/nomads/forms/esm4/
ftp://data1.gfdl.noaa.gov/users/ESM4/ESM4Documentation/GFDL-ESM4/inputData/ESM4_rundir.tar.gz
ftp://data1.gfdl.noaa.gov/users/ESM4/ESM4Documentation/GFDL-ESM4/inputData/ESM4_rundir.tar.gz
https://doi.org/10.1175/1520-0469(1999)056%3C4167:ASPOMF%3E2.0.CO;2
https://doi.org/10.5194/acp-10-8097-2010
https://doi.org/10.5194/acp-10-8097-2010
https://doi.org/10.1175/JCLI-D-12-00162.1
https://doi.org/10.5194/acp-19-9613-2019
https://doi.org/10.5194/acp-19-9613-2019
https://acp.copernicus.org/articles/5/2603/2005/
https://doi.org/10.1016/j.atmosres.2012.06.028
https://doi.org/10.1175/JCLI3996.1
https://doi.org/10.1175/JCLI3994.1
https://esgf-node.llnl.gov/projects/input4mips/
https://esgf-node.llnl.gov/projects/input4mips/
https://esgf-node.llnl.gov/projects/input4mips/


Charlton‐Perez, A. J., Baldwin, M. P., Birner, T., Black, R. X., Butler, A. H., Calvo, N., et al. (2013). On the lack of stratospheric dynamical
variability in low‐top versions of the CMIP5 models. Journal of Geophysical Research: Atmospheres, 118, 2494–2505. https://doi.org/
10.1002/jgrd.50125

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., et al. (2002). Tropospheric aerosol optical thickness from the
GOCART model and comparisons with satellite and sun photometer measurements. Journal of the Atmospheric Sciences, 59, 461–483.
https://doi.org/10.1175/1520‐0469(2002)059<0461:TAOTFT>2.0.CO;2, 3

Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Mao, D., Martínez‐Alonso, S., et al. (2019). Radiance‐based retrieval bias mitigation
for the MOPITT instrument: the version 8 product. Atmospheric Measurement Techniques, 12, 4561–4580. https://doi.org/10.5194/
amt‐12‐4561‐2019

Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., et al. (2006). Emissions of primary aerosol and precursor gases in the
years 2000 and 1750 prescribed data‐sets for AeroCom. Atmospheric Chemistry and Physics, 6(12), 4321–4344. https://doi.org/10.5194/
acp‐6‐4321‐2006

Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., et al. (2011). The dynamical core, physical parameteri-
zations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. Journal of
Climate, 24(13), 3484–3519. https://doi.org/10.1175/2011JCLI3955.1

Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., et al. (2020). The GFDL earth system model version 4.1
(GFDL‐ESM4.1): Overall coupled model description and simulation characteristics. Journal of Advances in Modeling Earth Systems, 12.
https://doi.org/10.1029/2019MS002015

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.‐F., Pfister, G. G., Fillmore, D., et al. (2010). Description and evaluation of the Model
for Ozone and Related chemical Tracers, version 4 (MOZART‐4). Geoscientific Model Development, 3(1), 43–67. https://doi.org/10.5194/
gmd‐3‐43‐2010

Evans, S., Ginoux, P., Malyshev, S., & Shevliakova, E. (2016). Climate‐vegetation interaction and amplification of Australian dust varia-
bility. Geophysical Research Letters, 43, 11,823–11,830. https://doi.org/10.1002/2016GL071016

Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P., et al. (2009). Multimodel estimates of intercontinental
source‐receptor relationships for ozone pollution. Journal of Geophysical Research, 114, D04301. https://doi.org/10.1029/2008jd010816

Fiore, A. M., Oberman, J. T., Lin, M. Y., Zhang, L., Clifton, O. E., Jacob, D. J., et al. (2014). Estimating north American background ozone in
U.S. surface air with two independent global models: Variability, uncertainties, and recommendations. Atmospheric Environment, 96,
284–300. https://doi.org/10.1016/j.atmosenv.2014.07.045

Fountoukis, C., & Nenes, A. (2007). ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+
‐Ca2+‐Mg2+‐

NH4
+
‐SO4

2−
‐NO3

−
‐cl−‐H2O aerosols. Atmospheric Chemistry and Physics, 7(17), 4639–4659. https://doi.org/10.5194/acp‐7‐4639‐2007

Frith, S. M. (2013).Multi‐satellite merged ozone (O3) profile and Total column 1 month zonal mean L3 global 5.0 degree latitude zones (Vol.
V1). Greenbelt, MD, USA: Goddard earth sciences data and information services center (GES DISC).

Gallagher, M. W., Nemitz, E., Dorsey, J. R., Fowler, D., Sutton, M. A., Flynn, M., & Duyzer, J. (2002). Measurements and parameterizations
of small aerosol deposition velocities to grassland, arable crops, and forest: Influence of surface roughness length on deposition. Journal
of Geophysical Research, 107(D12), 4154. https://doi.org/10.1029/2001JD000817

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C. (2006). Estimates of global terrestrial isoprene emissions using
MEGAN (model of emissions of gases and aerosols from nature). Atmospheric Chemistry and Physics, 6(11), 3181–3210. https://doi.org/
10.5194/acp‐6‐3181‐2006

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The model of emissions of
gases and aerosols from nature version 2.1 (MEGAN2. 1): An extended and updated framework for modeling biogenic emissions.
Geoscientific Model Development, 5(6), 1471–1492. https://doi.org/10.5194/gmd‐5‐1471‐2012

Held, I. M., Guo, H., Adcroft, A., Dunne, J. P., Horowitz, L. W., Krasting, J., et al. (2019). Structure and performance of GFDL's CM4.0
climate model. Journal of Advances in Modeling Earth Systems, 11. https://doi.org/10.1029/2019MS001829

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens‐Maenhout, G., Pitkanen, T., et al. (2018). Historical (1750–2014) anthropogenic
emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development (Online),
11. https://doi.org/10.5194/gmd‐11‐369‐2018

Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., et al. (1998). AERONET—A federated instrument network and data
archive for aerosol characterization. Remote Sensing of Environment, 66(1), 1–16. https://doi.org/10.1016/S0034‐4257(98)00031‐5

Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., et al. (2003). A global simulation of tropospheric
ozone and related tracers: Description and evaluation of MOZART, version 2. Journal of Geophysical Research, 108(24). https://doi.org/
10.1029/2002JD002853

Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., & Lin, J. T. (2011). Global distribution of sea salt aerosols: New constraints from in situ
and remote sensing observations. Atmospheric Chemistry and Physics, 11(7), 3137–3157. https://doi.org/10.5194/acp‐11‐3137‐2011

Kahn, R. A., Nelson, D. L., Garay, M. J., Levy, R. C., Bull, M. A., Diner, D. J., et al. (2009). MISR aerosol product attributes and statistical
comparisons with MODIS. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 4095–4114. https://doi.org/10.1109/
TGRS.2009.2023115

Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera‐Poy, J., Kettle, A. J., et al. (2011). An updated climatology of surface dimethlysulfide
concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles, 25. https://doi.org/10.1029/2010GB003850

Levy, H. II, Horowitz, L. W., Schwarzkopf, M. D., Ming, Y., Golaz, J.‐C., Naik, V., & Ramaswamy, V. (2013). The roles of aerosol direct and
indirect effects in past and future climate change. Journal of Geophysical Research, 118(10), 4521–4532. https://doi.org/10.1002/
jgrd.50192

Levy, R. C., Remer, L., Mattoo, S., Vermote, E. F., & Kaufman, Y. J. (2007). Second‐generation operational algorithm: Retrieval of aerosol
properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. Journal of Geophysical
Research, 112. https://doi.org/10.1029/2006JD007811

Li, J., Mao, J., Min, K.‐E., Washenfelder, R. A., Brown, S. S., Kaiser, J., et al. (2016). Observational constraints on glyoxal production from
isoprene oxidation and its contribution to organic aerosol over the Southeast United States. Journal of Geophysical Research, 121,
9849–9861. https://doi.org/10.1002/2016JD025331

Lin, M., Fiore, A. M., Cooper, O. R., Horowitz, L. W., Langford, A. O., Levy, H., et al. (2012). Springtime high surface ozone events over the
western United States: Quantifying the role of stratospheric intrusions. Journal of Geophysical Research, 117. https://doi.org/10.1029/
2012JD018151

Lin, M., Fiore, A. M., Horowitz, L. W., Cooper, O. R., Naik, V., Holloway, J., et al. (2012). Transport of Asian ozone pollution into surface air
over the western United States in spring. Journal of Geophysical Research, 117. https://doi.org/10.1029/2011JD016961

10.1029/2019MS002032Journal of Advances in Modeling Earth Systems

HOROWITZ ET AL. 24 of 26

https://doi.org/10.1002/jgrd.50125
https://doi.org/10.1002/jgrd.50125
https://doi.org/10.1175/1520-0469(2002)059%3C0461:TAOTFT%3E2.0.CO;2
https://doi.org/10.5194/amt-12-4561-2019
https://doi.org/10.5194/amt-12-4561-2019
https://doi.org/10.5194/acp-6-4321-2006
https://doi.org/10.5194/acp-6-4321-2006
https://doi.org/10.1175/2011JCLI3955.1
https://doi.org/10.1029/2019MS002015
https://doi.org/10.5194/gmd-3-43-2010
https://doi.org/10.5194/gmd-3-43-2010
https://doi.org/10.1002/2016GL071016
https://doi.org/10.1029/2008jd010816
https://doi.org/10.1016/j.atmosenv.2014.07.045
https://doi.org/10.5194/acp-7-4639-2007
https://doi.org/10.1029/2001JD000817
https://doi.org/10.5194/acp-6-3181-2006
https://doi.org/10.5194/acp-6-3181-2006
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.1029/2019MS001829
https://doi.org/10.5194/gmd-11-369-2018
https://doi.org/10.1016/S0034-4257(98)00031-5
https://doi.org/10.1029/2002JD002853
https://doi.org/10.1029/2002JD002853
https://doi.org/10.5194/acp-11-3137-2011
https://doi.org/10.1109/TGRS.2009.2023115
https://doi.org/10.1109/TGRS.2009.2023115
https://doi.org/10.1029/2010GB003850
https://doi.org/10.1002/jgrd.50192
https://doi.org/10.1002/jgrd.50192
https://doi.org/10.1029/2006JD007811
https://doi.org/10.1002/2016JD025331
https://doi.org/10.1029/2012JD018151
https://doi.org/10.1029/2012JD018151
https://doi.org/10.1029/2011JD016961


Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M., & Tonnesen, G. (2017). US surface ozone trends and extremes from 1980 to 2014:
Quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. Atmospheric Chemistry and Physics, 17,
2943–2970. https://doi.org/10.5194/acp‐17‐2943‐2017

Lin, M., Malyshev, S., Shevliakova, E., Paulot, F., Horowitz, L. W., Fares, S., et al. (2019). Sensitivity of ozone dry deposition to
ecosystem‐atmosphere interactions: A critical appraisal of observations and simulations. Global Biogeochemical Cycles, 33, 1264–1288.
https://doi.org/10.1029/2018GB006157

Liu, J., Fan, S., Horowitz, L. W., & Levy, H. II (2011). Evaluation of factors controlling long‐range transport of black carbon to the Arctic.
Journal of Geophysical Research, 116, D04307. https://doi.org/10.1029/2010JD015145

Mao, J., Fan, S., Jacob, D. J., & Travis, K. R. (2013). Radical loss in the atmosphere from Cu‐Fe redox coupling in aerosols. Atmospheric
Chemistry and Physics, 13(2), 509–519. https://doi.org/10.5194/acp‐13‐509‐2013

Mao, J., Horowitz, L. W., Naik, V., Fan, S., Liu, J., & Fiore, A. M. (2013). Sensitivity of tropospheric oxidants to biomass burning emissions:
Implications for radiative forcing. Geophysical Research Letters, 40, 1241–1246. https://doi.org/10.1002/grl.50210

Mao, J., Paulot, F., Jacob, D. J., Cohen, R. C., Crounse, J. D., Wennberg, P. O., et al. (2013). Ozone and organic nitrates over the eastern
United States: Sensitivity to isoprene chemistry. Journal of Geophysical Research: Atmospheres, 118, 11,256–11,268. https://doi.org/
10.1002/jgrd.50817

Matthes, K., Funke, B., Anderson, M. E., Barnard, L., Beer, J., Charbonneau, P., et al. (2017). Solar Forcing for CMIP6 (v3.2). Geoscientific
Model Development, 10. https://doi.org/10.5194/gmd‐10‐2247‐2017

Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., et al. (2017). Historical greenhouse gas con-
centrations for climate modelling (CMIP6). Geoscientific Model Development, 10(5), 2057–2116. https://doi.org/10.5194/gmd‐10‐2057‐
2017

Monahan, E. C., Spiel, D. E., & Davidsona, K. L. (1986). A model of marine aerosol generation via whitecaps and wave disruption. In E. C.
Monahan & G. M. Niocaill (Eds.), Oceanic Whitecaps (pp. 167–174). Dordrecht, Holland: Springer.

Murray, L. T., Logan, J. A., & Jacob, D. J. (2013). Interannual variability in tropical tropospheric ozone and OH: The role of lightning.
Journal of Geophysical Research, 118, 11,468–11,480. https://doi.org/10.1002/jgrd.50857

Naik, V., Horowitz, L. W., Fiore, A. M., Ginoux, P., Mao, J., Aghedo, A. M., & Levy, H. (2013). Impact of preindustrial to present‐day
changes in short‐lived pollutant emissions on atmospheric composition and climate forcing. Journal of Geophysical Research:
Atmospheres, 118, 8086–8110. https://doi.org/10.1002/jgrd.50608

Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, J.‐F., Lin, M., et al. (2013). Preindustrial to present‐day changes in
tropospheric hydroxyl radical and methane lifetime from the atmospheric chemistry and climate model Intercomparison project
(ACCMIP). Atmospheric Chemistry and Physics, 13(10), 5277–5298. https://doi.org/10.5194/acp‐13‐5277‐2013

Olivier, J., Peters, J., Granier, C., Pétron, G., Müller, J.‐F., & Wallens, S. (2003). Present and future surface emissions of atmospheric com-
pounds, POET report #2, EU project EVK2‐1999‐00011. Brussels, Belgium: European Commission. Retrieved from http://www.aero.
jussieu.fr/projet/ACCENT/POET.php

Pai, S. J., Heald, C. L., Pierce, J. R., Farina, S. C., Marais, E. A., Jimenez, J. L., et al. (2020). An evaluation of global organic aerosol schemes
using airborne observations. Atmospheric Chemistry and Physics, 20(5), 2637–2665. https://doi.org/10.5194/acp‐20‐2637‐2020

Paulot, F., Fan, S., &Horowitz, L.W. (2017). Contrasting seasonal responses of sulfate aerosols to declining SO2 emissions in the easternUS:
Implications for the efficacy of SO2 emission controls. Geophysical Research Letters, 44, 455–464. https://doi.org/10.1002/2016GL070695

Paulot, F., Ginoux, P., Cooke, W. F., Donner, L. J., Fan, S., Lin, M. Y., et al. (2016). Sensitivity of nitrate aerosols to ammonia emissions and
to nitrate chemistry: Implications for present and future nitrate optical depth. Atmospheric Chemistry and Physics, 16(3), 1459–1477.
https://doi.org/10.5194/acp‐16‐1459‐2016

Paulot, F., Jacob, D. J., Johnson, M. T., Bell, T. G., Baker, A. R., Keene,W. C., et al. (2015). Global oceanic emission of ammonia: Constraints
from seawater and atmospheric observations. Global Biogeochemical Cycles, 29(8), 1165–1178. https://doi.org/10.1002/2015GB005106

Paulot, F., Malyshev, S., Nguyen, T., Crounse, J. D., Shevliakova, E., & Horowitz, L. W. (2018). Representing sub‐grid scale variations in
nitrogen deposition associated with land use in a global earth system model: Implications for present and future nitrogen deposition
fluxes over North America. Atmospheric Chemistry and Physics, 18(24), 17,963–17,978. https://doi.org/10.5194/acp‐18‐17963‐2018

Paulot, F., Paynter, D., Ginoux, P., Naik, V., Whitburn, S., Van Damme, M., et al. (2017). Gas‐aerosol partitioning of ammonia in biomass
burning plumes: Implications for the interpretation of spaceborne observations of ammonia and the radiative forcing of ammonium
nitrate. Geophysical Research Letters, 44, 8084–8093. https://doi.org/10.1002/2017GL074215

Pétron, G., Crotwell, A. M., Dlugokencky, E., & Mund, J. W. (2019). Atmospheric carbon monoxide dry air mole fractions from the NOAA
ESRL carbon cycle cooperative global air sampling network, 1988‐2018, Version 2019‐08. Boulder, CO: NOAA Earth System Research
Laboratory. https://doi.org/10.15138/33bv‐s284

Pickering, K. E., Wang, Y., Tao, W.‐K., Price, C., &Müller, J.‐F. (1998). Vertical distributions of lightning NOx for use in regional and global
chemical transport models. Journal of Geophysical Research, 103(D23), 31,203–31,216. https://doi.org/10.1029/98JD02651

Pincus, R., Forster, P. M., & Stevens, B. (2016). The radiative forcing model Intercomparison project (RFMIP): Experimental protocol for
CMIP6. Geoscientific Model Development, 9(9), 3447–3460. https://doi.org/10.5194/gmd‐9‐3447‐2016

Prather, M., Holmes, C., & Hsu, J. (2012). Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of
atmospheric chemistry. Geophysical Research Letters, 39. https://doi.org/10.1029/2012GL051440

Price, C., Penner, J., & Prather, M. (1997). NOx from lightning: 1. Global distribution based on lightning physics. Journal of Geophysical
Research, 102, 5929–5941. https://doi.org/10.1029/96jd03504

Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., et al. (1987). Climate‐chemical interactions and effects of changing
atmospheric trace gases. Reviews of Geophysics, 25(7), 1441–1482. https://doi.org/10.1029/RG025i007p01441

Riddick, S., Dragosits, U., Blackall, T., Daunt, F., Wanless, S., & Sutton, M. (2012). The global distribution of ammonia emissions from
seabird colonies. Atmospheric Environment, 55, 319–327. https://doi.org/10.1016/j.atmosenv.2012.02.052

Rieder, H. E., Fiore, A. M., Horowitz, L. W., & Naik, V. (2015). Projecting policy‐relevant metrics for high summertime ozone pollution
events over the eastern United States due to climate and emission changes during the 21st century. Journal of Geophysical Research, 120,
784–800. https://doi.org/10.1002/2014JD022303

Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., et al. (2011). Chemical Kinetics and Photochemical Data
for Use in Atmospheric Studies Evaluation Number 17. Pasadena: JPL Publication 10–6 Jet Propulsion Laboratory.

Savoie, D. L., & Prospero, J. M. (1977). Aerosol concentration statistics for the northern tropical Atlantic. Journal of Geophysical Research,
82(37), 5954–5964. https://doi.org/10.1029/JC082i037p05954

Schnell, J. L., Naik, V., Horowitz, L. W., Paulot, F., Mao, J., Ginoux, P., et al. (2018). Exploring the relationship between surface PM2.5 and
meteorology in northern India. Atmospheric Chemistry and Physics, 18, 10157–10175. https://doi.org/10.5194/acp‐18‐10157‐2018

10.1029/2019MS002032Journal of Advances in Modeling Earth Systems

HOROWITZ ET AL. 25 of 26

https://doi.org/10.5194/acp-17-2943-2017
https://doi.org/10.1029/2018GB006157
https://doi.org/10.1029/2010JD015145
https://doi.org/10.5194/acp-13-509-2013
https://doi.org/10.1002/grl.50210
https://doi.org/10.1002/jgrd.50817
https://doi.org/10.1002/jgrd.50817
https://doi.org/10.5194/gmd-10-2247-2017
https://doi.org/10.5194/gmd-10-2057-2017
https://doi.org/10.5194/gmd-10-2057-2017
https://doi.org/10.1002/jgrd.50857
https://doi.org/10.1002/jgrd.50608
https://doi.org/10.5194/acp-13-5277-2013
http://www.aero.jussieu.fr/projet/ACCENT/POET.php
http://www.aero.jussieu.fr/projet/ACCENT/POET.php
https://doi.org/10.5194/acp-20-2637-2020
https://doi.org/10.1002/2016GL070695
https://doi.org/10.5194/acp-16-1459-2016
https://doi.org/10.1002/2015GB005106
https://doi.org/10.5194/acp-18-17963-2018
https://doi.org/10.1002/2017GL074215
https://doi.org/10.15138/33bv-s284
https://doi.org/10.1029/98JD02651
https://doi.org/10.5194/gmd-9-3447-2016
https://doi.org/10.1029/2012GL051440
https://doi.org/10.1029/96jd03504
https://doi.org/10.1029/RG025i007p01441
https://doi.org/10.1016/j.atmosenv.2012.02.052
https://doi.org/10.1002/2014JD022303
https://doi.org/10.1029/JC082i037p05954
https://doi.org/10.5194/acp-18-10157-2018


Schultz, M. G., Schroder, S., Lyapina, O., Cooper, O. R., Galbally, I., Petropavlovskikh, I., et al. (2017). Tropospheric ozone assessment
report: Database andmetrics data of global surface ozone observations. Elementa‐Science of the Anthropocene, 5. https://doi.org/10.1525/
elementa.244

Smirnov, A., Holben, B., Eck, T., Dubovik, O., & Slutsker, I. (2000). Cloud‐screening and quality control algorithms for the AERONET
database. Remote Sensing of Environment, 73(3), 337–349. https://doi.org/10.1016/S0034‐4257(00)00109‐7

Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman‐Fowler, M., Jones, D. B. A., et al. (2000). Three‐dimensional
climatological distribution of tropospheric OH: Update and evaluation. Journal of Geophysical Research, 105(D7), 8931–8980. https://
doi.org/10.1029/1999JD901006

Taylor, K. E., Williamson, D., & Zwiers, F. (2000). The sea surface temperature and sea ice concentration boundary conditions for AMIP II
simulations, PCMDI Report 60 (25 pp.). Livermore, CA: Program for Climate Model Diagnosis and Intercomparison, Lawrence
Livermore National Laboratory. Retrieved from https://pcmdi.llnl.gov/report/pdf/60.pdf

Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., et al. (2016). Why do models overestimate surface ozone in the
Southeast United States? Atmospheric Chemistry and Physics, 16(21), 13,561–13,577. https://doi.org/10.5194/acp‐16‐13561‐2016

vanMarle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.‐L., Field, R. D., et al. (2017). Historic global biomass burning emissions
based on merging satellite observations with proxies and fire models (1750‐2015). Geoscientific Model Development, 10(9), 3329–3357.
https://doi.org/10.5194/gmd‐2017‐32

Wild, O., Voulgarakis, A., O'Connor, F., Lamarque, J.‐F., Ryan, E. M., & Lee, L. (2020). Global sensitivity analysis of chemistry‐climate
model budgets of tropospheric ozone and OH: Exploring model diversity. Atmospheric Chemistry and Physics, 20(7), 4047–4058. https://
doi.org/10.5194/acp‐20‐4047‐2020

Williams, R. M. (1982). A model for the dry deposition of particles to natural water surfaces. Atmospheric Environment, 16, 1933–1938.
https://doi.org/10.1016/0004‐6981(82)90464‐4

Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.‐F., Naik, V., Stevenson, D. S., et al. (2013). Pre‐industrial to end 21st century
projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP).
Atmospheric Chemistry and Physics, 13(4), 2063–2090. https://doi.org/10.5194/acp‐13‐2063‐2013

Young, P. J., Naik, V., Fiore, A. M., Gaudel, A., Guo, J., Lin, M. Y., et al. (2018). Tropospheric ozone assessment report: Assessment of
global‐scale model performance for global and regional ozone distributions, variability, and trends. Elementa‐Science of the
Anthropocene, 6(1), 10. https://doi.org/10.1525/elementa.265

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., et al. (2009). Asian emissions in 2006 for the NASA INTEX‐B
mission. Atmospheric Chemistry and Physics, 9(14), 5131–5153. https://doi.org/10.5194/acp‐9‐5131‐2009

Zhao, M., Golaz, J.‐C., Held, I. M., Guo, H., Balaji, V., Benson, R., et al. (2018a). The GFDL global atmosphere and land model AM4.0/
LM4.0: 1. Simulation characteristics with prescribed SSTs. Journal of Advances in Modeling Earth Systems, 10(3), 691–734. https://doi.
org/10.1002/2017MS001208

Zhao, M., Golaz, J.‐C., Held, I. M., Guo, H., Balaji, V., Benson, R., et al. (2018b). The GFDL global atmosphere and land model AM4.0/
LM4.0: 2. Model description, sensitivity studies, and tuning strategies. Journal of Advances in Modeling Earth Systems, 10. https://doi.
org/10.1002/2017MS001209

Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., et al. (2015). Heterogeneous chemistry: A mechanism missing in current
models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmospheric Chemistry
and Physics, 15(4), 2031–2049. https://doi.org/10.5194/acp‐15‐2031‐2015

Ziemke, J. R., Oman, L. D., Strode, S. A., Douglass, A. R., Olsen, M. A., McPeters, R. D., et al. (2019). Trends in global tropospheric ozone
inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA‐2 GMI simulation. Atmospheric
Chemistry and Physics, 19(5), 3257–3269. https://doi.org/10.5194/acp‐19‐3257‐2019

10.1029/2019MS002032Journal of Advances in Modeling Earth Systems

HOROWITZ ET AL. 26 of 26

https://doi.org/10.1525/elementa.244
https://doi.org/10.1525/elementa.244
https://doi.org/10.1016/S0034-4257(00)00109-7
https://doi.org/10.1029/1999JD901006
https://doi.org/10.1029/1999JD901006
https://pcmdi.llnl.gov/report/pdf/60.pdf
https://doi.org/10.5194/acp-16-13561-2016
https://doi.org/10.5194/gmd-2017-32
https://doi.org/10.5194/acp-20-4047-2020
https://doi.org/10.5194/acp-20-4047-2020
https://doi.org/10.1016/0004-6981(82)90464-4
https://doi.org/10.5194/acp-13-2063-2013
https://doi.org/10.1525/elementa.265
https://doi.org/10.5194/acp-9-5131-2009
https://doi.org/10.1002/2017MS001208
https://doi.org/10.1002/2017MS001208
https://doi.org/10.1002/2017MS001209
https://doi.org/10.1002/2017MS001209
https://doi.org/10.5194/acp-15-2031-2015
https://doi.org/10.5194/acp-19-3257-2019


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


